Projekte

ELECTROLIFE: Vertiefung der Kenntnisse über die umfassende Degradation von Elektrolyseur-Technologien durch Modellierung, Prüfung und Lebensdauervorbeugung im Hinblick auf die industrielle Umsetzung

Projekte

Zeitraum

Partner

Geldgeber

Ansprechpartner

01/2024-01/2029

Politecnico di Torino (Italien, Koordinator), Forschungszentrum Jülich GmbH (Deutschland), Uniresearch B.V. (Niederlande), Enel Green Power SpA (Italien), Technische Universität Darmstadt (Deutschland), Graz University of Technology (Österreich), Kerionics s.l. (Spanien), Aalborg University (Dänemark), University of Lille (Frankreich), Stargate Hydrogen Solutions OU (Estland), Pietro Fiorentini s.p.a. (Italien), Hyter s.r.l. (Italien), Consiglio Nazionale delle Ricerche (Italien), 1s1 Energy Portugal Unipessoal Lda (Portugal), AEA s.r.l. (Italien), volytica diagnostics GmbH (Deutschland), SolydEra SpA (Italien)

EU Kommission (Horizon Europe)

Dr. Mariya E. Ivanova

Links/Informationen

Elektrolyse-Technologien leiden unter Einschränkungen in Bezug auf Kosten, Effizienz, Stabilität, Skalierbarkeit und Reziklierbarkeit. Dies ist vor allem auf das mangelnde Verständnis und die fehlende Identifizierung der Degradationsmechanismen von Elektrolyseuren zurückzuführen. ELECTROLIFE zielt darauf ab, die Effizienz von Elektrolyseuren zu erhöhen und die Lebensdauer dieser Systeme zu verlängern. Dieses große Ziel wird durch umfangreiche Testkampagnen in Kombination mit Multiphysik-Simulationen von superimposed Degradationsmechanismen, Prototyping von Zellen und Stack-Komponenten sowie den Bau spezieller Teststände erreicht. Zusätzlich zu standardisierten Testprotokollen werden Diagnose- und Stack-Zustandsmodelle entwickelt, um die Degradationsrate zu reduzieren und die Implementierung von vorausschauenden Kontrollsystemen zu ermöglichen. ELECTROLIFE wird den Einsatz von langlebigen Stacks demonstrieren und die Nutzung grüner Wasserstofftechnologien zur Unterstützung der Dekarbonisierung der europäischen Industrie weltweit fördern.

https://cordis.europa.eu/project/id/101137802

ECOLEFINS: Ko-ionische Keramikreaktoren für die CO2/H2O-Elektroumwandlung in leichte Olefine

Zeitraum

Partner

Geldgeber

Ansprechpartner

10/2023 – 09/2026

CERTH (Griechenland, Koordinator), Forschungszentrum Jülich GmbH (Deutschland), Politecnico di Torino (Italien), Universität Groningen (Niederlande), Polytechneio Kritis (Griechenland), University of St. Andrews (Vereinigtes Königreich), ELCOGEN OY (Finnland) und Hellenic Energy (Griechenland)

EU Kommission (Horizon Europe)

Dr. Mariya E. Ivanova

Links/Informationen

Als einer der Hauptverursacher der weltweiten CO2-Emissionen sollte die chemische Grundstoffindustrie dringend mit erneuerbarem Strom gekoppelt werden, um von fossilen Brennstoffen unabhängig zu werden. Als EIC-Pathfinder-Projekt zielt ECOLEFINS darauf ab, ein neues, rein elektrisches Paradigma für die elektrische Umwandlung von CO2 und H2O in leichte Olefine zu schaffen - die wichtigsten Zwischenprodukte für Polymere und andere chemische Produkte des täglichen Lebens. Im Rahmen des Projekts werden keramische elektrochemische Geräte eingeführt und gleichzeitig modernste Nanotechnologie und Technik für die Entwicklung effizienter Elektroden und Kurzstapel eingesetzt, um die künstliche Photosynthese von CO2 mit erneuerbaren Energien in wertvolle Chemikalien zu ermöglichen.

https://cordis.europa.eu/project/id/101099717

Hier ist die offizielle Website des ECOLEFINS-Projekts http://ecolefinsproject.eu/

Projekt ML4SOC

Zeitraum

Partner

Geldgeber

Ansprechpartner

08/2023-07/2026

Université de Picardie, KMS Technology Center

BMWK

Prof. Dr. Olivier Guillon

Prof. Dr. Norbert H. Menzler

PD Dr. Hartmut Schlenz

Links/Informationen

Das Projekt Maschinelles Lernen für Festoxidzellen (Machine learing for solid oxide cells) beschäftigt sich mit der Anwendung von maschinellem Lernen auf das Verfahren des Foliengießens, welches eines der Hauptherstellungsverfahren für Festoxid-Brennstoff- und Elektrolysezellen ist. Aber auch Gastrennmembranen und Festkörperbatterien werden z.T. mit diesem Prozess hergestellt. Mittels des Foliengießens können keramische oder metallische Schlicker, bestehend aus den jeweiligen Pulvern, organischen oder wässrigen Lösungsmitteln und organischen stabilisierenden Zusatzstoffen, zweidimensional ausgedehnte dünne Schichten gegossen werden. Schichtdicken variieren von wenigen Mikrometern bis ca. 2mm und die Mikrostrukturen reichen nach dem Sintern von dicht bis porös. Durch das ML4SOC Projekt sollen erstmals die Methodiken des ML im keramischen Folienguss angewendet werden. In einer Kooperation mit der U Picardie in Frankreich, welche sich gemeinsam mit dem IEK-1 um das ML kümmert, der Prototypbau-Firma KMS Technology Center aus Dresden, welche Foliengießbänke entwickelt und aufbaut, wird das Vorhaben bearbeitet. Im IEK-1 wird das Foliengießen seit 25 Jahren als keramotechnische Methode eingesetzt und in diesem Projekt soll mittels ML eine Verbesserung des bis heute durch Versuch-und-Irrtum funktionierenden Foliengießens erfolgen. Als Bauteil wurde das Substrat einer brenngaselektrodengeträgerten Festoxidzelle ausgewählt.

NOUVEAU

Zeitraum

Partner

Geldgeber

Ansprechpartner

11/2022 - 10/2025

IEK-2, VITO, Marion Technologies S.A., Coatema GmbH, TU Eindhoven, QSAR Lab, Fundacion IMDEA Energia, CNRS, Fiaxell Sarl

EU Kommission (Horizon Europe)

Dr. Christian Lenser

Links/Informationen

Das von der europäischen Kommission geförderte NOUVEAU-Projekt befasst sich durch das Mitwirken verschiedenster Institutionen aus Industrie und (außer-)universitären Forschungseinrichtungen auf intereuropäischer Ebene mit einer nachhaltigeren Gestaltung von Festoxidzellen (Solid Oxide Cells, SOCs). Ziel ist es, durch die Anwendung moderner Beschichtungstechnologien und Modellierung sowie nachhaltigerem Design und Recyclingstrategien neue Zellen und Stacks mit deutlicher Einsparung in der Nutzung von seltenen Erden, Edelmetallen und Chrom entwickeln zu können. Seitens des Forschungszentrums Jülich steht die Ersetzung bisherig verwendeter hoch-chromhaltiger Edelstähle für den Einsatz als Interkonnektoren im Vordergrund, wobei die Verwendung kostengünstiger konventioneller Stähle mit reduziertem Chromanteil durch den Einsatz einer geeigneten Beschichtung ermöglicht werden soll. Die Charakterisierung der entstehenden Verbunde sowie die Untersuchung ihrer Resistenz gegenüber Korrosion und Chromabdampfung erfolgt in enger Zusammenarbeit von IEK-1 und IEK-2.

ElChFest

Zeitraum

Partner

Geldgeber

Förderkennzeichen

Ansprechpartner

01/2022- 12/2024

IEK-2, IAM-ET (KIT), IDM (HSKA)

BMBF

03SF0641A

Dr. Christian Lenser

Links / Informationen

Im Verbundvorhaben ElChFest arbeiten wir zusammen mit unseren Partnern in Karsruhe an der Entwicklung einer Festoxidelektrolysezelle (SOEC) auf Basis von dotiertem Cerioxid, sowie an der Optimierung der Zelle und deren Betriebsweise. Hierzu werden detaillierte materialwissenschaftliche, mikrostrukturelle und elektrochemische Untersuchungen durchgeführt, mit deren Hilfe die mechanische Spannung in der Zelle als Funktion der Betriebsparameter ermittelt werden kann.

ReNaRe - Recycling und Nachhaltige Ressourcennutzung

Zeitraum

Partner

Geldgeber

Förderkennzeichen

Ansprechpartner

04/2021- 03/2025

FZJ (IEK-1, -2, ZEA-1), TU BA Freiberg, RWTH Aachen, KIT, FhG-IPA, HZDR, Nickelhütte Aue, Heraeus, Öko-Institut, Dechema, Hexis/mPower, TU München

BMBF

FKZ 03HY111J

Prof. Dr. Olivier Guillon

Prof. Dr. Norbert H. Menzler

Links / Informationen

Das Verbundvorhaben ReNaRe ist Teil der Technologieplattform H2Giga. Im Vorhaben werden die Möglichkeiten des Recyclings von Festoxid-Elektrolyseur-Stacks untersucht. Im Vordergrund stehen sowohl Wiedernutzung, Aufarbeitung oder Recycling von Komponenten. Je nach Stackkonzept und/oder Verwertungskonzept können Materialien oder Komponenten direkt wieder verwendet werden oder müssen aufwändig aufbereitet werden. Schwerpunkt des IEK-1 ist die Wieder-Nutzung der keramischen Komponenten der Zelle entweder erneut in SOCs oder in alternativen Anwendungen.

https://www.wasserstoff-leitprojekte.de/leitprojekte/h2giga

SOC Degradation 2 - Degradation von SOCs

Zeitraum

Partner

Geldgeber

Förderkennzeichen

Ansprechpartner

03/2021 - 02/2024

IEK-2, -9, -13, -14, IKTS, DLR, KIT, Bosch, Hexis/mPower, Kerafol, Sunfire, Mann+Hummel, Horiba FuelCon, SOLIDpower

BMBF

FKZ 03SF0621A

Prof. Dr. Norbert H. Menzler

Dr. Michael Wolff

Links / Informationen

Ebenfalls auf der Initiative Wasserstoffrepublik Deutschland basierend, wird im BMBF-finanzierten Förderprojekt der Schwerpunkt auf spezifische, nur unter Elektrolysebedingungen auftretende Degradationseffekte gelegt. Am IEK-1 werden hierzu alternative Brenngaselektroden entwickelt und markttaugliche Herstellungsverfahren fortentwickelt. Eine breite Beteiligung weiterer deutscher Industriepartner (Kerafol, Hexis/mPower, Sunfire, Mann+Hummel, Bosch, Horiba FuelCon, SOLIDpower) sowie externe Forschungseinrichtungen (IKTS, DLR, KIT) und Jülich-Institute (IEK-2, -9, -13, -14) sichert eine breite Herangehensweise zum Verständnis und zur Lösung der auftretenden Effekte.

https://www.wasserstoff-leitprojekte.de/grundlagenforschung/brennstoffzellen

WirLebenSOFC - Lebensdauervorhersage für SOCs

Zeitraum

Partner

Geldgeber

Förderkennzeichen

Ansprechpartner

03/2021 - 03/2024

Bosch, RJL, KIT, HS Karlsruhe, HS Aalen

BMBF

FKZ 03SF0622B

Prof. Dr. Norbert H. Menzler

Martin Juckel

Links / Informationen

Finanziert vom BMBF im Rahmen der Initiative Wasserstoffrepublik Deutschland, bearbeitet das Projekt die spezifischen Degradationsphänomene einer sog. metallgestützten Festoxidbrennstoffzelle (MSC) zur Rückverstromung über erneuerbare Quellen generierten Wasserstoffs. Unter Führung der Firma Bosch und zusammen mit der Firma RJL und den Forschungspartnern KIT, HS Aalen und HS Karlsruhe kümmern sich die Institute IEK-1, -2 und -14 insbesondere um die thermisch-atmosphärischen Degradationsphänomene (materialspezifisch, mikrostrukturabhängig und thermodynamisch/kinetisch) und die Fortentwicklung der MSC.

https://www.wasserstoff-leitprojekte.de/grundlagenforschung/brennstoffzellen

Innovationspool-Projekt "Solarer Wasserstoff: hochrein und komprimiert"

Zeitraum

Partner

Geldgeber

Ansprechpartner

01/2021 - 12/2023

IEK-2, -5, -9, -11, -14, ZEA-1, DLR, KIT, HZB, HZDR, IPP

HGF

Dr. Mariya E. Ivanova

Links / Informationen

Die Energiewende ist eines der wichtigsten Zukunftsprojekte unserer Zeit, bei dem die Erzeugung und Nutzung erneuerbarer und nachhaltiger Energie eine wichtige Triebkraft für eine dekarbonisierte Wirtschaft ist. In diesem Zusammenhang spielt Wasserstoff - und insbesondere der so genannte "grüne" Wasserstoff aus erneuerbaren Energien - eine entscheidende Rolle als "game changer" im gesamten Energiesystem. Das Innovationspool-Projekt "Solarer Wasserstoff: hochrein und komprimiert" zielt darauf ab, sowohl den wissenschaftlichen Kenntnisstand als auch die technologische Reife verschiedener lebensfähiger Technologien für die Umwandlung von Solarenergie in Wasserstoff (H2) zu verbessern. Im Rahmen dieses Projekt soll am IEK-1 eine protonenleitende Elektrolysezelle entwickelt werden, um Wasserstoff hochrein und wasserfrei zu erhalten. Die dafür notwendige Energie kommt aus solaren Quellen.

https://energy.helmholtz.de/forschungshighlights/solarer-wasserstoff-hochrein-und-komprimiert

SynSOFC 2

Zeitraum

Partner

Geldgeber

Ansprechpartner

03/2020 - 02/2023

TU München

DFG

Dr. Christian Lenser

Links / Informationen

Im Rahmen eines von der Deutschen Forschungsgemeinschaft (DFG) geförderten Verbundvorhabens der TU München mit dem Forschungszentrum Jülich wird die Kopplung einer Biomassevergasungsanlage mit einer oxidkeramischen Brennstoffzelle (Solid Oxide Fuel Cell, SOFC) zur Herstellung von elektrischer Energie aus Biomasse untersucht. Im Rahmen dieser Dissertation sollen neue Werkstoffkombinationen für die Brenngaselektrode entwickelt werden, die degradationstoleranter gegenüber Brenngasverunreinigungen sind. Die zu untersuchenden Stoffsysteme umfassen sowohl Cermets aus Nickel und Gadolinium-dotiertem Ceroxid (GDC) als auch innovative vollkeramische Materialien, die während des Betriebs nanoskalige Katalysatorpartikel ausscheiden. Die am IEK-1 entwickelten Werkstoffe und Komponenten werden an der TU München mit gezielt verunreinigtem synthetischen Syngas getestet, um Rückschlüsse auf die Wechselwirkung der einzelnen Moleküle mit dem Werkstoff ziehen zu können.

Letzte Änderung: 05.03.2024